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About DataLab @ FIT CTU

Applied machine learning for Earth observation, meteorology, and fundamental AI research.
Focus: cloud removal for optical satellites, NDVI (Normalized Difference Vegetation Index)
time-series for crop health monitoring, local weather downscaling, and novel AI architectures.
Notable achievements: Won NeurIPS 2022 challenges in weather prediction and exoplanet gas
detection from spectral images.
Contributions span research papers, open tooling, and operational prototypes with
industry/academia partners.
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Use Case — Cloud Removal: Motivation

Why: Optical satellite monitoring is hindered by frequent cloud cover, breaking time-series needed
for farm decisions.
Impact: Missing observations delay detection of stress, pests, irrigation/fertilization effects, and
yield risk.
Objective: Restore gap-free reflectance/NDVI time series and provide confidence to support
risk-aware analytics.
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Use Case — Cloud Removal: Motivation (Example)

NDVI visualization for a representative area; cloudy periods disrupt continuity.
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Use Case — Cloud Removal: Data

Optical: Sentinel-2 L2A, 12 bands @ 10 m; SCL used for cloud/shadow masks.
Radar: Sentinel-1 GRD (VV, VH) co-registered to Sentinel-2.
Context: Optional VUMOP soil types; EUMETSAT LSA point products.
Sampling: Czech Republic ROIs; 256×256 patches; 5-frame recent context; 2022 train, 2023
validation.
Prep: Resample to 10 m, mask clouds for targets, normalize inputs.
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Use Case — Cloud Removal: Data (Illustration)

Another NDVI example highlighting spatial variability across fields.
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Use Case — Cloud Removal: Methods

Models: UnCRtainTS (mono-temporal) with uncertainty head; U-Net baseline.
Inputs: Concatenate recent S2, S1 channels; optional contextual layers.
Training: Adam (lr=1e−3), batch=6; MAE/MSE objectives; NDVI-loss variant for NDVI accuracy.
Inference: Predict gap-free reflectance/NDVI and uncertainty for low-confidence regions.
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Use Case — Cloud Removal: Architecture

UnCRtainTS architecture with uncertainty estimation head.
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Use Case — Cloud Removal: Results

Accuracy: UnCRtainTS MAE 0.0255 vs. U-Net 0.0278, mosaicking 0.0386, recent-cloudless
0.0371.
Inputs: S1+S2 > S2-only > S1-only; both are crucial.
NDVI: Optimizing NDVI directly improves NDVI MAE (e.g., 0.0631 vs. 0.0721).
Ablations: Soil/LSA context gave marginal gains in this setup.
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Use Case — Cloud Removal: Training/Validation

Diagnostics used to monitor model convergence and generalization.
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Use Case — Cloud Removal: Conclusion

Gap-free NDVI series across cloudy seasons enable timely insights for agriculture.
Combining S1+S2 is key; uncertainty maps support cautious decision-making.
Next: multi-temporal UnCRtainTS, richer weather features, and field validation/ops deployment.
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Use Case — Local Weather: Motivation

Why: Global forecasts (e.g., GFS) are too coarse; microclimates drive site-specific conditions.
Impact: Farmers need accurate 24h station-level forecasts for irrigation, spraying, and harvest
planning.
Objective: Improve local 24h forecasts by combining station history, GFS, and ERA5-Land-derived
features.
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Use Case — Local Weather: Pipeline

Data flow from GFS and stations to local predictions; ERA5-Land features estimated via U-Net.

Pavel KordíkDataLab, Faculty of Information TechnologyDepartment of Applied MathematicsCzech Technical University in PragueAI-Based Climate Data Processing: Cloud Removal and Weather Prediction for AgricultureOctober 22, 2025 13 / 30



Use Case — Local Weather: Data

Stations: HadISD subset — 27 stations in/near Czech Republic; hourly variables (T, dew point,
wind, precip, cloud, SLP).
Global: GFS 0.25° grid; rich atmospheric variables and lead times.
Reanalysis: ERA5-Land — used offline; U-Net trained to estimate ERA5-Land-like features from
GFS for near-real-time.
Splits: Train 2022; validate 2023; station time windows + matched GFS rectangles.
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Use Case — Local Weather: Methods

Stage 1: U-Net super-resolution maps GFS → ERA5-Land (T, dew point, wind u/v) to produce
higher-quality features.
Stage 2: Station-level predictors (CatBoost, MLP, LSTM seq2seq) using station history + GFS +
generated ERA5-Land features.
Targets: 24h-ahead T, dew point, wind speed at 2 m.
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Use Case — Local Weather: U-Net Architecture
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Use Case — Local Weather: U-Net Example

Example mapping: GFS (top) → U-Net output (middle) → ERA5-Land (bottom).
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Use Case — Local Weather: Results

Accuracy: CatBoost achieves ≈ 1.06–1.07 ◦C MAE (T) and ≈ 1.01 m/s (wind), improving over
GFS and persistence.
ERA5-Land: Generated features yield slight gains; best overall remains CatBoost.
Robustness: Better diurnal cycles and extremes vs. raw global forecasts.
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Use Case — Local Weather: Model Comparison

Comparison of baselines vs. our models across target variables.
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Use Case — Local Weather: Conclusion

Local 24h forecasts substantially improved using station+GFS (+ERA5-Land features when
available).
Deployable pipeline; next: reduce station history needs and scale to ∼200 stations.
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Use Case — Climate Superresolution: Motivation

Why: Global NWP (e.g., GFS) is too coarse for field-level agriculture; microclimates matter.
Impact: Operations (frost protection, irrigation, spraying) need accurate 24h local forecasts.
Objective: Superresolve coarse forecasts using station data and learned spatial patterns.
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Use Case — Climate Superresolution: Data

Global: GFS 0.25° predictions; multiple variables and lead times.
Stations: High-frequency vineyard stations in S. Moravia (temperature at 15 min).
Geography: Elevation and gradients to capture slope/aspect effects.
Splits: Spatial+temporal splits to test generalization across stations and years.
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Use Case — Climate Superresolution: Methods

Models: LightGBM, TabPFN, Transformer; KNN hybrid for spatial interpolation.
Targets: 24h-ahead 2 m temperature; bias-correct GFS to local conditions.
Evaluation: MAE across space/time splits; qualitative checks of spatial realism.
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Climate Superresolution: MAE
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MAE of 24h temperature across space/time splits and models.
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Climate Superresolution: Time Series
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Example station time series: predictions vs. measurements.
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Climate Superresolution: Spring Example
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Spatial map: models capturing topographic temperature patterns.
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Climate Superresolution: Winter Example
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Predicted temperature on 2024-01-10 12:00+24h

Spatial map: models capturing inversion and slope effects.
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Use Case — Climate Superresolution: Results

Accuracy: Up to ∼24% MAE reduction vs. GFS; TabPFN-KNN best on hardest split.
Realism: Base models preserve topographic patterns better than KNN-smoothed fields.
Ops: Low compute cost vs. physics downscaling; practical for deployment.
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Use Case — Climate Superresolution: Conclusion

Superresolution bridges global forecasts and field needs; improves local 24h temperature.
Future: satellite LST for broader validation; refine trade-off between MAE and spatial realism.
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Contact

DataLab @ FIT CTU, Prague — collaborations welcome.
Pavel Kordík: https://kordikp.github.io Email: pavel.kordik@fit.cvut.cz

Web: https://fit.cvut.cz Email: datalab@fit.cvut.cz
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