

Technical Architecture and Functional Analysis of the Info4Agro Precision Agriculture Ecosystem

1. Introduction

The digitization of agriculture requires the seamless synthesis of multi-scale environmental data, ranging from global satellite observations to micro-climatic sensor readings. Info4Agro represents a sophisticated, modular response to this challenge, engineered not merely as a user-facing application but as a comprehensive ecosystem of interoperable microservices, data pipelines, and analytical engines.¹ This report provides an exhaustive technical analysis of the Info4Agro solution, dissecting its architectural components, data integration strategies, and functional dynamics.

The system is predicated on a "Solution Box" architecture—often referred to internally as the SpaceloTBox—which serves as the foundational integration layer.¹ Unlike monolithic agricultural software systems that enforce rigid dependencies between data storage and presentation, Info4Agro adopts a federated, API-first philosophy. This design choice addresses the inherent heterogeneity of agricultural data, where raster satellite imagery, vector field boundaries, time-series telemetry, and multidimensional meteorological models must coexist and interact without performance degradation.¹

The analysis presented herein draws upon extensive technical specifications, development logs, and architectural diagrams to reconstruct the engineering decisions underpinning the platform. Special emphasis is placed on the transition from graphical user interfaces (GUIs) to "API-as-a-Product" commercialization strategies, the integration of Artificial Intelligence (AI) for optical cloud masking and meteorological downscaling, and the rigorous handling of provenance in complex data processing chains.² By isolating the core subsystems—Remote Sensing Data Processing (RSDPS), Sensor Data Management (SensLog), Spatial Zoning (FieldCalc), and the unifying orchestration layer—this document elucidates the technical relationships that enable Info4Agro to function as a robust decision support system for climate-smart agriculture.

2. Architectural Principles and System Design

2.1 The Federated "Solution Box" Paradigm

The architectural identity of Info4Agro is defined by its modular "Solution Box" framework. This approach rejects the centralized data warehouse model in favor of a federated ecosystem where disparate services communicate via standardized Application Programming Interfaces (APIs).¹ The objective is to unify access to existing solutions —such as Copernicus Earth Observation (EO) data, GEOSS repositories, and commercial meteorological services —while enhancing them with partner -developed proprietary value -added services.¹

At the core of this architecture is a middleware orchestration layer that mediates interactions between upstream data providers and downstream client applications. This layer leverages the "Data Space" concept, utilizing the LayerManager Service (Layman) to publish geospatial data through Open Geospatial Consortium (OGC) compliant web services, specifically Web Map Service (WMS) and Web Feature Service (WFS). This standardization ensures that the frontend application remains a lightweight client, visualizing data that has already been processed, styled, and optimized by heavy backend services.¹

The federation model extends to the storage infrastructure. Rather than duplicating global archives, Info4Agro employs a "connector" pattern. Partner -developed adapters broker access to external endpoints, such as the Copernicus Data Space Ecosystem or the Meteoblue API.¹ However, to mitigate latency and adhere to bandwidth constraints, the system implements a hybrid data strategy. Frequently accessed datasets, such as Sentinel -2 tiles for monitored regions or ERA5-Land climate reanalyses, are staged and cached within the partner's cloud infrastructure.¹ This "staging" strategy is critical for enabling computationally intensive operations, such as time -series gap filling or on -demand vegetation index calculation, which would be infeasible if reliant solely on real -time remote queries.¹

2.2 API-First Commercialization Strategy

A pivotal evolution in the Info4Agro technical roadmap is the strategic shift toward an API -first commercialization model. Development discussions reveal a consensus that the Graphical User Interface (GUI) serves primarily as a "showcase" or demonstration tool, while the true commercial value resides in the underlying APIs.² This distinction allows the platform's analytical engines—such as the AI-corrected weather forecast or the cloud -free optical mosaic generator—to be integrated into third -party Farm Management Information Systems (FMIS), machinery terminals, or decision support tools developed by other vendors.²

The API ecosystem is segmented into functional domains to ensure modularity and independent scalability. The EO API governs the discovery, download, and processing of satellite imagery, exposing endpoints for vegetation indices and cloud -free composites.² The

Agroclimatic API provides long-term climate statistics and derived agronomic indicators, such as growing degree units and water balance.² The **SensLog API** manages real-time telemetry from in-situ sensors and serves localized weather forecasts.² Finally, the **FieldCalc API** offers specialized spatial analysis services for delineating management zones and generating variable rate application (VRA) maps.¹

Table 1: Core API Domains and Functionalities

API Domain	Primary Responsibility	Key Functions	Data Sources
EO API	Satellite Data Management	Discovery, Download, Index Calculation, Cloud Masking	Sentinel-1/2, Landsat, MODIS
SensLog API	IoT & Weather	Sensor Data Ingestion, Local Forecast Downscaling, Alerting	In-situ Sensors, OpenMeteo, ICON
Agroclimatic API	Long-term Climate Analysis	Historical Statistics, Agro-factor Derivation (GDU, Water Balance)	ERA5-Land, Climate Reanalyses
FieldCalc API	Spatial Analysis	Management Zone Delineation, VRA Map Generation	Processed EO Data, Yield Maps

This granular architecture facilitates independent versioning. For instance, the meteorological subsystem can be updated to ingest data from a new provider, such as shifting from GFS to the ICON model via OpenMeteo, without necessitating changes to the satellite processing pipelines.²

2.3 Provenance and Auditability

In precision agriculture, the credibility of an agronomic recommendation depends entirely on the traceability of its input data. Info4Agro addresses this through a rigorous provenance mechanism. Every derived product —whether a Variable Rate Application map or a downscaled temperature forecast —retains metadata linking it back to its source observations. ¹

The system architecture ensures that when data is ingested from external sources like Copernicus or Meteoblue, the original product identifiers, processing levels, and timestamps are preserved. For example, if the RSDPS generates a cloud -free composite, the resulting metadata includes references to the specific Sentinel -2 granules used in the reconstruction, the version of the AI model applied, and the processing timestamp. ¹ This audit trail is stored within the PostgreSQL/PostGIS database layer, allowing users and downstream applications to

verify the "freshness" and reliability of the data powering their decisions.²

3. Earth Observation Subsystem: The RSDPS

The Remote Sensing Data Processing System (RSDPS) constitutes the primary engine for ingesting, transforming, and serving Earth Observation data within the Info4Agro ecosystem. It is designed to automate the transition from raw satellite telemetry to Analysis Ready Data (ARD), enabling agricultural stakeholders to utilize complex remote sensing products without expertise in image processing.¹

3.1 Data Ingestion and Hybrid Storage

The RSDPS is architected to handle high-volume data streams, primarily from the Copernicus Sentinel-1 (Synthetic Aperture Radar) and Sentinel-2 (Multispectral Optical) missions.¹ The ingestion pipeline is triggered by the definition of an Area of Interest (AOI) and a temporal window. The system queries external catalogs—such as the Copernicus Data Space Ecosystem—to identify relevant scenes that intersect with the user's fields.¹

A critical architectural decision within the RSDPS is the separation of metadata management from raster storage. Heavy raster files (GeoTIFFs) are stored directly on the file system to maximize Input/Output (I/O) throughput and reduce database bloat.² Conversely, essential metadata—acquisition dates, cloud cover percentages, spatial footprints, and processing levels—is parsed and cataloged in a PostgreSQL database extended with PostGIS.¹

This hybrid storage model enables rapid querying. When a user or service requests available imagery for a specific location, the system queries the PostGIS index to identify file paths, rather than scanning the file system itself. This decoupling significantly improves performance, particularly when managing multi-year archives of high-resolution imagery.²

3.2 Optical Data Processing and Cloud Masking

For optical data (Sentinel-2), the RSDPS pipeline includes automated atmospheric correction steps to convert Top-of-Atmosphere (TOA) radiance to Bottom-of-Atmosphere (BOA) reflectance (Level-2A). The system utilizes algorithms such as MAJA (MACCS-ATCOR Joint Algorithm) to correct for aerosol scattering and water vapor absorption, ensuring that spectral values represent the true surface properties of the crop.¹

However, the primary challenge in optical remote sensing for agriculture is cloud cover. Standard cloud masks often fail to identify thin cirrus clouds or cloud shadows, which can introduce significant errors into vegetation index calculations. To address this, Info4Agro integrates an advanced AI-driven cloud masking module.¹

This AI module employs Deep Learning techniques—referenced in documentation as

UnCRtaiNTS or similar Convolutional Neural Network (CNN) architectures —to analyze the temporal and spectral context of a scene. By examining the time-series history of a pixel, the model can distinguish between transient cloud features and permanent surface changes.¹ When a cloud is detected, the system attempts to reconstruct the pixel's value using temporal interpolation or by fusing the optical data with cloud-penetrating Synthetic Aperture Radar (SAR) data from Sentinel-1.¹

Technically, these AI-cleaned images are treated as distinct products. They are stored alongside the original raw scenes in the file system, often in a dedicated directory structure (e.g., raw/Sentinel-2CF for Cloud-Free).² The EO API exposes these cleaned variants to the frontend, allowing the application to display a toggle or filter. This empowers the user to choose between the "true" observational data (with gaps) and the "reconstructed" gap-free product, maintaining transparency regarding the synthetic nature of the data.²

3.3 The Sentinel - 1 Integration Challenge

While optical data processing is relatively standardized, the integration of Sentinel - 1 radar data presented unique engineering challenges for the Info4Agro team. Unlike Sentinel -2 data, which is delivered in regularized MGRS tiles, Sentinel- 1 data arrives in long "swaths" or strips that do not align with standard map grids. ²

Development transcripts reveal a significant technical debate regarding "mosaicking" versus "dynamic tiling." Creating seamless mosaics of radar backscatter for large territories is computationally expensive and storage -intensive due to the need to account for varying incidence angles and orbit directions (ascending vs. descending). ² The team initially struggled with edge artifacts —radiometric discontinuities or "seams" that appear where two radar swaths overlap.²

The resulting architectural solution favors an on -demand processing logic. Rather than pre - generating a massive global mosaic, the system identifies the specific radar acquisitions covering a requested AOI at runtime. It then processes these subsets dynamically to generate the requested product (e.g., soil moisture proxy or biomass index).² To handle the visual seams, the team implemented gradient smoothing algorithms that blend pixel values in overlap regions, although for strict analytical purposes, the raw radiometric values are often preserved to avoid introducing interpolation errors. ²

3.4 Vegetation Indices and On -Demand Calculation

The RSDPS exposes a comprehensive suite of vegetation indices via its RESTful API. These indices serve as the primary metrics for crop health assessment. The system supports standard indices such as the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI), as well as more complex derivatives like the Vegetation Condition Index (VCI) for drought monitoring. ¹

The calculation engine supports two modes of operation:

1. **Pre-computation:** For actively monitored management zones, indices are calculated upon ingestion and cached to ensure instant retrieval.
2. **On-Demand Calculation:** The API allows users to define custom spectral formulas. The backend utilizes Python libraries such as GDAL and NumPy to compute these custom indices on the fly from the underlying reflectance rasters.¹

This flexibility is crucial for research and experimentation, allowing agronomists to test new spectral combinations without requiring changes to the underlying software infrastructure.

4. Meteorological Intelligence and the SensLog Middleware

Weather variability is the dominant stochastic factor in agriculture. Info4Agro mitigates this uncertainty through a multilayered meteorological subsystem that integrates global numerical models, hyper-local sensor data, and long-term climatological statistics.

4.1 Data Sourcing: From GFS to ICON

The platform's meteorological data strategy has evolved to prioritize spatial resolution and forecast accuracy. Initial implementations utilized the Global Forecast System (GFS), but technical limitations and the need for finer granularity in Europe led to a migration toward the ICON (ICOsaHedral Nonhydrostatic) model accessed via the Open -Meteo API.² The ICON model offers superior resolution (approximately 2 - 7 km depending on the domain), which is essential for capturing micro-climatic variations in complex terrain.²

To manage the ingestion of this data, the **SensLog** middleware employs a dedicated "Feeder" component. This component periodically polls external APIs (e.g., OpenMeteo, Meteoblue) for forecast data corresponding to registered Points of Interest (POIs) —typically the coordinates of physical weather stations or field centroids.²

A critical operational constraint is API rate limiting. For example, the free tier of the Open -Meteo API limits users to 10,000 requests per day.² To adhere to this while serving a growing user base, SensLog implements a sophisticated caching and batching strategy. Forecasts are downloaded in batches and stored locally within the SensLog database. Client applications then query this local cache rather than the external provider, ensuring high availability and compliance with usage limits.²

4.2 The ALIANCE Module: AI -Driven Downscaling

A differentiating feature of Info4Agro is the **ALIANCE** module, which performs local meteorological downscaling.¹ Global models, even high-resolution ones like ICON, operate on

grids that smooth out local topographic effects. A forecast for a 7 km grid cell may not accurately reflect the conditions in a valley or on a specific slope.

The ALIANCE module addresses this by employing Artificial Intelligence to refine coarse global forecasts. The architecture utilizes a U-Net super-resolution network combined with ensemble learning techniques (CatBoost/LSTM).¹ The training process involves:

1. **Input:** Coarse global forecast data (e.g., GFS or ICON fields).
2. **Ground Truth:** Historical data from local IoT weather stations managed by SensLog.
3. **Context:** High-resolution climate reanalysis data (ERA5 -Land) to characterize the local climatology.

By learning the error patterns of the global model relative to the specific sensor location, the AI model generates a "smart forecast" or site -specific correction. ¹ During operation, the system ingests the latest global forecast, applies the learned correction function, and outputs a refined prediction for variables such as temperature, precipitation, and wind speed.

Validation studies indicate that this approach can reduce temperature Mean Absolute Error (MAE) by approximately 59% compared to raw global models. ¹

4.3 Agro -Climatic Factors and Long -Term Analysis

Beyond short-term weather prediction, strategic farm management requires an understanding of long-term climatic trends. Info4Agro addresses this via the **Agroclimatic API** , which derives indicators from the ERA5 -Land dataset.¹ This dataset provides a consistent view of the global climate from 1950 to the present.

The system computes a range of specialized agronomic factors:

- **Growing Degree Units (GDU):** Essential for predicting crop growth stages.
- **Frost -Free Period:** Critical for determining safe planting windows.
- **Water Balance:** The net difference between precipitation and reference evapotranspiration (ET₀).
- **Temperature Sums:** Accumulated thermal energy for specific periods.

Technical discussions reveal the complexity of managing these "time -aware" datasets. For instance, ERA5 data is natively indexed in Coordinated Universal Time (UTC), while agricultural operations depend on local time. The backend logic must carefully handle time zone conversions to ensure that daily aggregations (e.g., daily max temperature) align with the local calendar day.²

A specific feature born from user requirements is the "Min -Max Band" visualization. This feature queries the Agroclimatic API to retrieve the minimum and maximum temperatures recorded on a specific calendar day over the last decade. ² Overlaying this band on the current forecast provides farmers with immediate context: is today's temperature normal, or is it an extreme event?

4.4 Automated Agronomic Recommendations

The synthesis of meteorological data culminates in the generation of actionable advice. The system implements a rule -based engine that translates raw variables into roughly 13 specific agro-recommendations.² These logic gates answer practical operational questions:

- **Spraying:** Is wind speed below the drift threshold? Is there rain forecast in the next 4 hours?
- **Sowing:** Is soil temperature above the germination threshold? Is soil moisture adequate?
- **Harvesting:** Is grain moisture likely to be low enough?

These recommendations are delivered via the API as structured JSON objects, allowing frontend applications to display simple status indicators (e.g., "Good time to spray" vs. "Do not spray") without burdening the user with raw data interpretation. ²

5. FieldCalc: Spatial Analytics for Management Zones

Precision agriculture is defined by the move from whole -field management to site -specific management. The **FieldCalc** component is the dedicated spatial analytics engine that enables this transition.¹

5.1 Delineation of Management Zones

FieldCalc employs algorithmic segmentation to divide agricultural fields into "Management Zones"—regions with homogeneous soil properties and yield potential. ¹ This zoning is not arbitrary; it is based on the fusion of multi -temporal data layers:

- **Historical Satellite Archives:** FieldCalc analyzes time-series of vegetation indices (e.g., NDVI) spanning multiple years. By stacking these layers, the system identifies stable patterns of spatial variability. Areas that consistently show low biomass across different seasons are flagged as low-potential zones, likely due to permanent soil constraints. ¹
- **Topographic Derivatives:** Digital Elevation Models (DEMs) are processed to generate slope and aspect maps, which influence water runoff and solar insolation.
- **Soil Sampling:** Interpolated maps of key nutrients (Nitrogen, Phosphorus, Potassium) and pH levels.

The core zoning algorithm utilizes statistical clustering methods, such as k -means or quantile classification, to group pixels with similar characteristics into a user -defined number of zones (typically 3 to 5).¹

5.2 Variable Rate Application (VRA) Maps

The practical output of zoning is the Variable Rate Application (VRA) map. Once zones are defined, the system calculates the optimal input rate for each zone based on a selected agronomic strategy.¹

- **Production Strategy:** Allocates more fertilizer to high -potential zones to maximize yield in areas that can support it.
- **Regenerative Strategy:** Focuses resources on rehabilitating low -performing zones or maintaining soil health.

FieldCalc exposes these capabilities via a RESTful API. A user submits a field geometry (e.g., GeoJSON polygon) and parameters (target yield, fertilizer type, strategy). The backend processes the request and returns a zoning map and a prescription map. ¹ Crucially, these outputs are generated in industry -standard formats like Shapefile or ISOXML, ensuring compatibility with the onboard computers of modern tractors and spreaders. ¹

6. Sensor Data Management: The SensLog Architecture

Info4Agro's connection to the physical world is mediated by **SensLog**, a robust sensor data management solution designed to handle the heterogeneity of IoT devices. ¹

6.1 Standardization and ISO 19156

SensLog is built upon a relational database schema (PostgreSQL) that implements the **ISO 19156 Observations & Measurements** standard.¹ This rigorous standardization is vital for interoperability. It abstracts the specific details of hardware devices, allowing the system to treat a temperature reading from a high -end meteorological station exactly the same as one from a low -cost IoT node.¹

The data ingestion layer employs a system of **Connectors**. These software adapters translate the proprietary data formats of various hardware manufacturers (e.g., Davis, Pessl, Meteoblue) into the internal SensLog REST API format.¹ This abstraction layer insulates the core analytics engine from hardware vendor lock -in and facilitates the rapid integration of new sensor types.

6.2 Real-Time Analytics and Alerting

SensLog includes an embedded analytics engine that processes data streams in real -time. It performs essential functions such as:

- **Aggregation:** Computing hourly, daily, or monthly statistics (min, max, average, sum) from high -frequency raw data.

- **Event Detection:** Monitoring incoming data streams against user-defined thresholds (e.g., triggering a frost alert if temperature drops below 0 °C).¹
- **Gap Filling:** Applying interpolation algorithms to estimate missing values in sensor time-series, ensuring continuity for downstream models.¹

Furthermore, SensLog acts as the repository for the "smart forecast" data generated by the ALIANCE module. It stores both the raw historical measurements and the AI-corrected future predictions for every sensor location, enabling seamless visualization of past, present, and future conditions in a single graph.²

7. Artificial Intelligence Integration and Infrastructure

While standard algorithms drive much of the platform, Info4Agro incorporates specific, advanced AI modules to solve high -complexity problems.

7.1 Deep Learning for Image Restoration

The platform's capability to reconstruct cloud -obscured imagery relies on Deep Learning models, specifically CNN-based architectures akin to UnCRtaiNTS.¹ These models leverage the temporal correlation of agricultural landscapes. Because field boundaries and soil types do not change rapidly, the model can infer the reflectance of a pixel obscured by clouds today based on its values in clear images from days before and after.¹

Integrating this capability required significant infrastructure upgrades. Development logs highlight the necessity of GPU acceleration to handle the inference load of processing Sentinel-2 tiles over large regions.² The system performs this inference server -side, generating new "reconstructed" raster layers that are stored and indexed alongside the raw data.²

7.2 GeoLLM "JackDaw": Conversational Analytics

The **GeoLLM "JackDaw"** represents the frontier of the system's user interaction. It is a Retrieval-Augmented Generation (RAG) system designed to allow users to query geospatial data using natural language.¹ The architecture involves a "GeoRAG" mechanism that indexes vector GIS features and their attributes.

When a user asks, "Which fields are at risk of drought?", the system does not hallucinate an answer. Instead, it retrieves the relevant soil moisture and precipitation data from the Feature Store, feeds this context into the Large Language Model (LLM), and generates a text response grounded in the actual database records.¹ This component democratizes access to complex spatial analytics, allowing non -expert users to derive insights without navigating complex GIS interfaces.

8. Frontend Interface and User Experience

The **Info4Agro** web application is the visible face of this complex ecosystem. Built using modern web technologies (React/TypeScript), it serves as an integration point for the various backend services.²

8.1 Workflow -Centric Design

The application is organized around specific user workflows, primarily the "Place" (location - centric) and "Crop" (plant -centric) perspectives.¹

- **Dashboard:** Aggregates alerts, recent satellite thumbnails, and sensor status into a unified view.
- **Map Interface:** Leveraging the Layman service, this view allows users to toggle between different data layers—VRA maps, True Color satellite imagery, NDVI layers, and sensor locations.¹ Development logs note specific challenges with visualizing "True Color Images" (TCI), particularly regarding contrast enhancement for AI-cleaned images to ensure they appear natural to the human eye.²
- **Analytical Graphs:** Interactive charts allow users to explore time-series data. However, bug reports indicate ongoing refinement needs, such as issues with chart scaling during zoom operations in the "Place & Crop" views.²

8.2 The Freemium Technical Implementation

The platform's business model—Freemium—is baked into the technical architecture. Access control is enforced at the API level. Basic features, such as viewing raw satellite data or global weather forecasts, are accessible to free users. Advanced capabilities, such as downloading VRA maps, accessing AI-corrected forecasts, or viewing long-term historical climate comparisons (the Min-Max band), are gated behind subscription checks.² This requires a robust Authentication and Authorization (AuthN/AuthZ) layer that validates user entitlements before processing any request to the premium endpoints.

9. Operational Model and Roadmap

9.1 From "Poloprovoz" to Production

Info4Agro is currently in a phase described in Czech grant terminology as "poloprovoz" (semi-operation).² This designates a system that is functionally complete and operating in a real-world pilot environment but has not yet fully transitioned to commercial production.

The transition to production involves significant infrastructure hardening. Development logs

reveal a shift from ad-hoc processing on university servers to dedicated, high-availability commercial infrastructure.² This migration includes ensuring sufficient GPU capacity for AI workloads and implementing rigorous monitoring and logging to guarantee service level agreements (SLAs).²

9.2 Commercialization Strategy: Intelligence Inside

A key strategic insight is the decision to focus on **API commercialization**. The development team recognizes that large machinery manufacturers (e.g., John Deere, Claas) and established Farm Management Software (FMS) providers already control the "glass" —the screens farmers look at every day. Rather than competing for user attention with a standalone app, Info4Agro aims to be the "intelligence inside" these platforms.²

Consequently, the roadmap prioritizes the stability, documentation, and standardization of the **EO API**, **SensLog API**, and **Agroclimatic API**. The Info4Agro web application will continue to exist as a reference client —a demonstration of the platform's capabilities—but the primary commercial product will be the stream of clean, analysis-ready data and agronomic insights flowing through the APIs to third-party integrators.²

10. Conclusion

Info4Agro stands as a comprehensive, technically mature ecosystem for precision agriculture. Its architecture effectively bridges the gap between raw scientific data—from satellites, models, and sensors—and the practical, operational needs of farmers. By decoupling data processing (RSDPS, FieldCalc) from data management (SensLog) and visualization (Info4Agro), the system achieves the flexibility required to integrate future data sources and analytical models.

The seamless integration of AI for functional tasks like cloud removal and weather downscaling demonstrates a pragmatic application of advanced technology. Furthermore, the strategic pivot towards an API-first model positions Info4Agro not merely as another software application, but as a fundamental infrastructure layer for the digital agriculture economy. While operational challenges remain—particularly in scaling GPU infrastructure and finalizing radar data integration—the federated, standards-based design provides a resilient foundation for long-term growth and interoperability.

Works cited

1. D3.1 Design specification of the KijaniBox
2. ALIANCESouhrn.docx