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Abstract—Large Language Models (LLMs) excel at 

synthesising globally documented knowledge but lack the fine-
grained, real-time awareness required for field-level agricultural 
and rural-planning decisions. This paper introduces JackDaw, a 
spatially enabled chat-agent architecture that couples 
foundation-model reasoning with multi-modal geospatial data 
streams and a retrieval-augmented generation (RAG) pipeline. 
JackDaw implements a tool-prefiltering mechanism that selects 
only those data connectors whose topical, temporal and spatial 
metadata match the current query, thereby mitigating the 
diminishing returns observed when LLMs are exposed to large, 
flat toolsets. Through LangChain-based orchestration the 
platform dynamically assembles workflows that range from 
lightweight natural-language processing models to domain-
specific analytic kernels, while a value-engineering strategy 
allocates computationally intensive models (e.g., GPT-4-class) 
only to tasks that require broad contextual reasoning. 
Benchmark experiments on forestry-asset discovery and 
vineyard-site assessment demonstrate that JackDaw delivers 
location-specific, traceable answers that outperform a 
standalone proprietary LLM, which provides only generic or 
spatially misattributed responses. The results confirm that 
bridging global language models with local spatial intelligence 
markedly reduces hallucination rates and enhances the 
operational readiness of AI for sustainable agriculture and rural 
development.  

Index Terms—Large language models; geospatial AI; 
retrieval-augmented generation; context-aware agriculture; 
spatial decision support; tool prefiltering; JackDaw system; 
rural planning. 
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I. INTRODUCTION 
Artificial intelligence (AI) has transitioned from a niche 

computational technique to a pervasive epistemic lens 
through which agriculture and rural development are in-
creasingly interpreted. In agronomic contexts, AI is not 
merely a collection of algorithms but a socio-technical ap-
paratus that converts raw environmental signals into ac-
tionable knowledge, thereby mediating the long-standing 
tension between global food-system efficiency and local 
stewardship of land, labour and biodiversity. By formalis-
ing inductive reasoning at unprecedented spatial and tem-
poral scales, AI promises to reconcile high-frequency de-
cision support for producers with broader rural-develop-
ment directives—resilience, equity, sustainability—pro-
vided its deployment remains transparent, uncertainty-
aware and ethically aligned [1], [2].  
AI pipelines now ingest heterogeneous data streams from 
in-situ sensors (soil-moisture probes, automated weather 
stations), passive and active satellite constellations (multi-
spectral Sentinel-2 MSI, C-band Sentinel-1 SAR, DESIS 
hyperspectral, LiDAR), low-altitude unmanned-aerial sys-
tems, and physics-based or statistical climate re-analyses 
(GFS, ERA-5-Land). Early studies relied on single-sensor 
inputs and shallow classifiers; contemporary frameworks 
fuse multi-temporal, multi-modal observations via ma-
chine-and deep-learning architectures optimized for high-
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dimensional spatiotemporal covariance structures. Senti-
nel-2 reflectance cubes harmonised with Sentinel-1 back-
scatter underpin continental land-use-intensification in-
ventories [3] and sub-field crop-type delineation [4]. En-
semble decision-tree learners, notably Random Forest, re-
main baseline regressors for temperate-cereal yield [5] and 
national wheat statistics [6], while deep neural networks 
gain traction where label density is sufficient: One study 
[7] stacked convolutional, gated-recurrent, and trans-
former encoders on fused Sentinel-1/2 sequences for pixel-
level classification; The method proposed in [8]  intro-
duced the 3-D → 2-D HypsLiDNet that couples DESIS 
voxels with LiDAR-derived canopy structure; Research in  
[9] demonstrated multimodal convolutional fusion of Sen-
tinel-2, edaphic layers and mesoscale meteorology for 
field-scale yield forecasting. Object-based learning ex-
ploiting explicit geostatistical segmentation persists for 
landscape stratification—findings from [10] combined 
Sentinel-2A, ALOS DSM, and PALSAR layers with Ran-
dom Forest to derive agro-ecological strata—and temporal 
self-attention mechanisms have been applied to integrated 
crop-livestock delineation in the subtropics [11].  
Operational deployment is constrained by observation 
gaps (cloud cover, revisit frequency) and by aleatoric un-
certainty in multi-sensor fusion. Research described in [12] 
mitigated these issues by embedding Sentinel-1 SAR into 
the UnCRtainTS cloud-removal network, lowering spec-
tral MAE to ≈ 0.025 reflectance units, and enabling con-
tinuous NDVI trajectories across Central-European 
croplands. On the prognostic front, high-resolution cli-
matic forcing has been advanced by up-scaling 0.25° GFS 
products to ERA-5-Land resolution via a U-Net super-res-
olution model, merging the output with HadISD station 
records, and applying CatBoost regression to reduce 24-h 
temperature MAE to ~1 °C [13]. Nevertheless, most agro-
nomic AI studies still rely on internal cross-validation; spa-
tially independent or inter-annual robustness tests remain 
rare—examples include paddock-out validation [14] and 
temporally stratified ten-fold splits [15]. Consequently, the 
methodological frontier is defined by scalable multi-sensor 
fusion, uncertainty-aware ensembles or transformers, and 
rigorous cross-region benchmarking to support operational 
use in dynamic agroecosystems. 
Large-language-model (LLM) research entered agricul-
tural informatics only recently, yet adoption is rapid. A sys-
tematic scan identified 26 geospatial-LLM papers up to 
early 2024—almost all post-November 2022—describing 
the field as “embryonic but rapidly accelerating” [16]; a 
parallel survey of multimodal ag-LLMs reached similar 
conclusions and noted rudimentary benchmarks [17]. De-
velopments have progressed from demonstration chatbots 
to end-to-end systems: ChatGeoAI converts plain-lan-
guage queries into PyQGIS code [18]; OmniGeo demon-
strates zero-shot reasoning over satellite imagery, vector 
polygons, and free text using an instruction-tuned vision-

language model [19]. Text-focused agronomic advisers in-
clude a retrieval-augmented fruit-and-vegetable system 
coupling Baichuan-2 with RAG to reduce hallucination 
rates by 10–40 % [20] and a cotton-soil engine where a 
fine-tuned GPT-2 outperforms LLaMA-2 for nutrient rec-
ommendations [21]. Synthetic data generation is exempli-
fied by an LLM-driven agentic workflow that fabricates 
realistic fault patterns for smart-tractor telemetry, enabling 
predictive maintenance testing). Document intelligence 
pipelines empower domain-agnostic LLMs to extract 
structured pest information from agronomic literature in 
zero-shot mode [22]. 
Across these studies, shared hurdles are evident. High-
quality labeled agri-text corpora and paired image–text da-
tasets remain scarce, forcing reliance on generic founda-
tion models or few-shot prompting [20] [17]. Factual reli-
ability is fragile, motivating retrieval-augmented genera-
tion [16]. Multimodal grounding across satellite, drone, 
sensor, and text streams is largely heuristic, as shown in 
[17] [19], while the compute and energy costs of fine-tun-
ing multi-billion-parameter models raise sustainability 
concerns. Explainability, data governance, and ethical 
compliance are critical yet under-explored prerequisites 
for commercial farm deployment [16]. 
Within two harvest seasons, the community has advanced 
from isolated demonstrations to retrieval-augmented, mul-
timodal assistants addressing yield prediction, soil man-
agement, pest intelligence, and equipment maintenance. 
Consolidating open data resources, curbing hallucinations, 
mastering efficient geo-text fusion, and delivering trans-
parent, farmer-oriented explanations now constitute the 
central agenda for AI-driven rural development.   

II. MOTIVATION 
Large Language Models (LLMs) have significantly im-

pacted various domains by leveraging vast datasets to pro-
vide comprehensive responses on diverse topics. Their ca-
pability to process global and well-documented infor-
mation allows them to efficiently recognize general trends, 
interpret historical data patterns, and detail well-known ge-
ographical areas. However, despite these substantial 
strengths, LLMs frequently exhibit limitations concerning 
the provision of precise, real-time insights required for lo-
cation-specific and dynamic contexts, such as agriculture 
and rural development. 

In agricultural practices, where decisions rely heavily on 
real-time data about local environmental conditions, pre-
cise field-level analytics, and seasonal variability, the lim-
itations of standalone LLMs become particularly pro-
nounced. For instance, while an LLM may comprehen-
sively discuss global agricultural trends or extensively 
documented practices, it may lack critical, timely insights 
into crop conditions in a less-documented rural area or the 
subtle seasonal variations affecting local agricultural 
productivity. 



 
 

 

Integrating LLMs with geospatial data offers a robust 
solution to bridge these gaps. Real-time geospatial data, 
encompassing remote sensing imagery from satellites, 
drones, weather stations, and in-situ sensors, can comple-
ment the generalized insights of LLMs with detailed, ac-
tionable information at specific locations and moments in 
time. By coupling spatial analysis technologies—already 
established through remote sensing platforms such as Sen-
tinel-1 and Sentinel-2, as well as advanced AI-driven 
methodologies—with the broad contextual knowledge of-
fered by LLMs, systems like JackDaw have demonstrated 
the potential to significantly enhance rural-urban planning 
and agricultural decision-making. 

The JackDaw prototype has underscored the value of 
this integrative approach by successfully combining the 
power of LLM reasoning with spatial analysis to provide 
context-aware insights critical for agriculture and rural 
management. Its approach exemplifies how synthesizing 
multi-modal data streams with deep-learning architectures 
can mitigate the limitations stemming from gaps in sensor 
observations or uncertainties in data fusion. Furthermore, 
JackDaw exemplifies the potential of multi-modal integra-
tion to improve practical agricultural outcomes by offering 
more precise yield forecasts, targeted resource manage-
ment recommendations, and improved environmental 
monitoring. 

Thus, developing an integrative platform that combines 
the strengths of LLMs with standard agricultural AI tools 
and GIS solutions represents a strategic opportunity. Such 
integration promises substantial advancements in rural ag-
ricultural practices, enabling more robust, evidence-based 
decision-making, enhancing sustainability, and ultimately 
improving rural livelihoods and economic development. 

 
Fig 1. The motivation for developing the JackDaw chat agent 

III. SOLUTION 
The JackDaw solution is designed to enhance the func-

tionality of LLMs by addressing their inherent limitations 
in accessing and interpreting localized, real-time data. This 
enhancement is significant in agricultural and rural plan-
ning professions, where precise localized knowledge is 
crucial. The gap between the global knowledge embedded 
in LLMs and the need for detailed local contextual infor-
mation is significant. JackDaw attempts to bridge this gap 
by integrating advanced geospatial data analysis and spe-
cialised AI tools into conversational AI interfaces. This in-
tegration enables more accurate and contextually aware re-
sponses from LLMs than what is possible with the founda-
tion models. 

The conceptual solution underlying JackDaw is facilitat-
ing meaningful conversations about geographical locations 
through LLMs. To achieve this, it is essential for LLMs to 
be not only aware of the location being discussed but also 
to possess an understanding of what specific data is rele-
vant to that place. Furthermore, to provide useful re-
sponses, JackDaw requires the model to discern which data 
sources should be utilised based on the topic, purpose, and 
spatial location of the conversation. These LLMs are ex-
pected to engage iteratively with various data sources to 
foster an incremental understanding of the context-specific 
to each inquiry. 

 
Conceptual workflow of a conversation with the Jack-

Daw chat agent 
JackDaw operates using a systematic workflow that be-

gins when a user initiates a query related to a specific geo-
graphic location through a user message to the agent. The 
system interprets this query and tries to match it against a 
large number of available “tools” that connect the LLM to 
a wide range of relevant data sources. These sources in-
clude spatial datasets, such as those defined by the Infra-
structure for Spatial Information in Europe (INSPIRE), 
public sector information (PSI), and specialised AI models 
optimised for agricultural analytics. 

 
Upon identifying which “tools” may be relevant to an-

swering the question, JackDaw proceeds to pass them to 
the language model, which collects both spatial and tabular 
data sets pertinent to the user's query. This includes sensor-
derived field data, satellite imagery, current weather fore-
casts, soil properties, and agronomic statistics. Specialised 
AI models process these datasets to generate analytical in-
sights, which are then contextualised and embedded into 
the chat interface. 

 



 
 

 

 
Fig 2. Conceptual flow of a conversation with the JackDaw spatial-ena-

bled chat agent 
 
Visualisations derived from the processed datasets are 

integrated into the user interface, providing graphical con-
text to the inquiries. These visual representations facilitate 
clearer insights and more actionable decision-making. By 
embedding enriched data insights into the LLM's reason-
ing process, JackDaw effectively bridges the gap between 
general global knowledge and the need for localized, ac-
tionable information. This approach offers robust and in-
formed answers to user inquiries, promoting enhanced de-
cision-making processes tailored specifically to rural and 
agricultural contexts. 

 
Through the innovative integration of geographic infor-

mation systems (GIS) and advanced AI-driven data analyt-
ics, JackDaw capitalises on existing expertise within these 
domains. This harnessing of advanced technologies pro-
motes a nuanced and effective decision-making process, 
significantly enhancing LLM capabilities in understanding 
and responding to location-specific questions. Conse-
quently, JackDaw transforms the application of LLMs in 
agricultural planning and rural development, making them 
more responsive and accurate in addressing context-spe-
cific inquiries. 

 
Enhancing Chat Conversations with Spatial Context 
 
Integrating an area of interest into a chat query can sig-

nificantly augment user interaction by providing spatial 
context to the conversation. This enhancement involves 
adding spatial features that encapsulate the geographical 

areas users wish to inquire about. The spatial data is repre-
sented using Well-Known Text (WKT) geometry features, 
a format allowing a detailed description of geometric 
shapes in a human-readable text string. By incorporating 
WKT geometry, users can define specific areas of interest 
directly within the chat interface. 

 
Ways of Incorporating Spatial Features 
Users can add spatial features to a chat query in two pri-

mary ways: through a client interface or via natural lan-
guage processing (NLP). When utilising a client interface, 
users can directly draw the areas of interest onto a map. 
This method relies on graphical tools that allow precise se-
lection and adjustment of shapes to represent the desired 
geographical space accurately. These shapes are then con-
verted into WKT format, maintaining their geometric char-
acteristics while enabling text-based communication in the 
chat. This method provides users with a tangible and intu-
itive way to specify areas of interest. 

Alternatively, spatial features can be derived from NLP 
queries. In this approach, a tool or algorithm processes the 
user's natural language inputs to extract relevant geograph-
ical information and convert it into WKT geometry. This 
method leverages advances in NLP to interpret user intent 
and spatial references embedded within the chat. Such 
tools can identify place names, landmarks, or specific di-
rections mentioned by users and translate them into spatial 
features. This capability allows users to describe their areas 
of interest using everyday language, simplifying the pro-
cess and making it accessible to a broader range of users. 

 
Facilitating Function and Tool Integration 
Once the spatial features are integrated into the chat, 

they are encapsulated within code blocks. These code 
blocks are clearly delineated to distinguish them from 
other elements of the chat. This demarcation ensures that 
the data is accurately identified and processed by subse-
quent tools or functions that the chat agent may call upon. 
Code blocks serve not only to organise information but 
also to maintain data integrity when transferring inputs 
across different operational environments. 

Incorporating spatial features as part of chat queries em-
powers chat agents to utilise this data in subsequent inter-
actions. The defined area of interest can be used as a pa-
rameter for various function or tool calls. For instance, a 
chat agent might access weather data, perform geograph-
ical analysis, or retrieve demographic information specific 
to the identified area. This capacity expands the function-
ality of chat agents, enabling more sophisticated queries 
and responses tailored to the user's spatial context. 

Adding areas of interest to chat queries through WKT 
geometry represents a meaningful advancement in interac-
tive technology. By allowing users to define spatial param-
eters using both graphical interfaces and natural language 
processing, the system becomes more flexible and user-



 
 

 

centric. Furthermore, the encapsulation of data within dis-
tinct code blocks facilitates seamless integration with other 
tools and functions. Such enhancements lead to more ef-
fective and targeted interactions, bridging the gap between 
spatial awareness and conversational interfaces. This inte-
gration serves as a transformative enhancement in fields 
where geographical context is critical, such as urban plan-
ning, logistics, and environmental monitoring, thereby ex-
panding the utility and applicability of chat-based systems 
in professional and research environments. 

 
Connecting data sources to LLMs 
Implementing knowledge acquisition in large language 

models (LLMs) involves equipping these models with an 
understanding of various "things," or categories of infor-
mation, which can be used to improve the applicability and 
accuracy of chat agents. This methodology necessitates the 
development of versatile tools that connect LLMs with rel-
evant data sources. LLM tools serve a crucial function in 
facilitating this connection, providing the necessary scaf-
folding to bridge the gap between an LLM's inherent lan-
guage skills and its access to a structured knowledge base. 

Versatility is a fundamental requirement when con-
structing these tools. They must be able to interlink effec-
tively with multiple data sources, thereby expanding the 
functional capabilities of chat agents. To achieve this, tool 
prompt engineering is an essential process. This involves 
designing specific prompts that guide the retrieval and pro-
cessing of data in a manner that aligns with the operational 
goals of the LLM. Making each tool available through a 
web service enhances accessibility and usability, allowing 
these tools to be integrated seamlessly into web-based ap-
plications. 

Developing numerous specialised tools can significantly 
enhance the LLM's ability to handle complex inquiries. In 
the realm of geophysical information, for instance, tools 
can analyse terrain by examining landforms, elevation, as-
pect, slope, and surface roughness. This data provides es-
sential context for applications ranging from environmen-
tal monitoring to urban planning. Similarly, climatic tools 
that gather information about temperature, wind patterns, 
cloud cover, precipitation, and solar radiation contribute to 
a comprehensive understanding of environmental condi-
tions across different regions and times, enriching predic-
tive models and research studies. 

Demographic information represents another vital cate-
gory, enabling insights into population characteristics and 
trends. Tools that analyse demographic data must consider 
population size, growth projections, historical trends, and 
the composition of populations based on gender and age. 
This data supports social dynamics, policy making, and 
economic forecast analyses. Economic tools can assess 
business demography and market sizes, offering valuable 
input for economic modeling, investment analysis, and 
strategic planning. 

Temporal tools are indispensable for temporal analysis, 
which is critical in assessing real-time changes and zeit-
geist trends. When coupled with historical data, a snapshot 
of current weather conditions enables detailed climatic as-
sessments. Moreover, zeitgeist tools, such as those utilising 
the Global Database of Events, Language, and Tone 
(GDELT), are instrumental in capturing contemporary so-
cio-political dynamics, offering insights into prevailing 
public sentiment and events affecting international rela-
tions and market behaviours. 

Incorporating statistical data with georeferenced identi-
fiers is instrumental for deriving meaningful insights based 
on location-specific features. By identifying Nomenclature 
of Territorial Units for Statistics (NUTS) identifiers for 
particular locations, it is possible to gather relevant demo-
graphic and business demography statistics. This georefer-
enced approach enables tailored analyses considering local 
variations, which is essential for targeted policymaking 
and regional development strategies. 

The utilisation of raster and grid data complements this 
analysis by providing detailed spatial information. Sources 
such as the European Space Agency (ESA), the Group on 
Earth Observations (GEO), and Sentinel data offer high-
resolution satellite imagery and derived raster datasets. 
These datasets are optimised for large-scale multidimen-
sional queries, allowing users to extract information that 
spans multiple dimensions and scales. This capability is 
particularly useful in applications like precision agricul-
ture, land use planning, and disaster management. 

Vector data, on the other hand, involves using line and 
polygon data formats typical of traditional Geographic In-
formation System (GIS) infrastructures. Adhering to stand-
ards such as those established by the Infrastructure for Spa-
tial Information in the European Community (INSPIRE), 
vector data provides a detailed locational context crucial 
for detailed mapping and spatial analysis. This infrastruc-
ture supports a wide array of applications, from infrastruc-
ture development to environmental conservation efforts. 

Document data serves an integral role in the holistic use 
of LLM tools, particularly in contexts that require the re-
trieval of legal documents, plans, reports, and other con-
textual information. Access to such documents allows 
LLMs to provide informed responses that are grounded in 
the regulatory and historical framework of the area in ques-
tion. For instance, in urban development scenarios, under-
standing zoning laws and historical city planning docu-
ments is essential to delivering relevant insights and rec-
ommendations. 

 
Limiting the number of tools made available to the 

LLM for improved accuracy and efficiency 
 
A significant aspect of working with these models in-

volves the invocation of external tools to enhance their 
problem-solving capabilities. However, as the number of 
tools accessible to an LLM increases, the efficiency and 



 
 

 

effectiveness of these tool invocations tend to diminish. To 
address this issue, it is critical to develop a robust method 
for prefiltering tools based on the specific requirements of 
a query or question. 

LLMs are inherently equipped with flat tool invocation 
capabilities. This means that they can be supplied with a 
limited set of tools to assist in fulfilling a task. However, 
as the array of available tools expands, the efficiency of the 
model’s capacity to appropriately call upon these tools de-
clines. This is mainly due to the overwhelming number of 
potential options, which can obscure the model's decision-
making process and reduce its ability to select the most 
pertinent tools for a given task. Therefore, a prefiltering 
step becomes necessary to manage tool selection effec-
tively. 

Prefiltering tools is an essential process that relies on 
structural metadata to determine which tools should be 
considered by the model in relation to the question at hand. 
This step ensures that only relevant tools are available for 
use, thereby optimising the model's performance and re-
ducing computational overhead. The prefiltering step can 
be executed by employing several criteria, each aimed at 
ensuring the model’s proficiency in addressing the specific 
nuances of the question. 

The initial criterion for filtering tools involves sorting by 
topic relevance. This means identifying tools that align 
with the subject matter of the inquiry. Questions often per-
tain to specific topics, and tools designed with an under-
standing of these subjects can offer more accurate and pre-
cise insights. For instance, if a question relates to environ-
mental science, the prefiltering system would bypass tools 
irrelevant to this field and focus on those offering insights 
or functionality that complement environmental studies. 

Another critical filtering criterion is temporal resolution. 
Questions may address events or data related to particular 
time periods, and not all tools possess the capability to han-
dle temporal queries comprehensively. The prefiltering 
system must, therefore, identify and prioritise tools that are 
equipped to deal with the specified temporal context. For 
example, if a query involves historical climate data from 
the 1980s, the system should filter out tools that only pro-
vide contemporary data, ensuring the most temporally rel-
evant tools are selected. 

In addition to temporal relevance, the selection of tools 
may also hinge on determining the best source of infor-
mation, especially in scenarios with overlapping data cov-
erage. This means the system should favour tools that offer 
the most precise or contextually appropriate data. For ex-
ample, if a model for Norway offers superior data specific-
ity compared to a broader European model for a particular 
question, the prefiltering mechanism should select the Nor-
wegian model. This ensures that the data used is both rele-
vant and of the highest quality possible for the query. 

Spatial resolution is another determinant in the prefilter-
ing process. Many questions necessitate specific spatial 

data resolutions, and tools may vary greatly in the granu-
larity of their data. It is essential to filter tools based on the 
spatial requirements specified in the question. If a question 
demands high-resolution spatial data, such as a 1-meter 
resolution for detailed topographic analysis, the prefilter-
ing mechanism should prioritise those tools capable of ful-
filling such needs. Conversely, for less detailed queries, 
tools offering broader, 100-meter resolution data may suf-
fice. 

The implementation of a structured prefiltering step en-
hances the ability of LLMs to select and utilise tools effec-
tively, leading to more accurate and efficient outcomes. By 
categorising tools based on topic, temporal and spatial ca-
pabilities, and data quality, the system reduces the cogni-
tive load on the model and ensures that only the most rele-
vant tools are engaged. This not only improves the model's 
response time and accuracy but also conserves computa-
tional resources. 

 
Agent implementation using Langchain for Python 
 
The integration and orchestration of calls to various ma-

chine learning models constitute a key component in the 
efficient deployment and utilisation of these models in 
real-world applications. Among the technologies facilitat-
ing this process, Langchain emerges as a pivotal tool. It 
offers an interface designed specifically for dynamic inter-
action with language models, significantly enhancing ap-
plied solutions' flexibility and maintainability. 

Langchain serves as an abstraction layer that simplifies 
the setup of client calls to large language models (LLMs). 
Through its design, Langchain provides a mechanism by 
which these models can be interacted with seamlessly, en-
suring that the underlying complexities of each model are 
effectively managed. The abstraction layer implemented 
by Langchain allows developers to perform model orches-
tration in a manner that separates the business logic from 
model-specific code. This, in turn, supports the ease of in-
tegration and modular development, facilitating a more 
structured approach to software development that incorpo-
rates these advanced models. 

Further, the abstraction layer not only supports seamless 
communication with a single LLM but also allows for the 
straightforward replacement of one model with another. 
This feature is essential in today's rapidly evolving ma-
chine-learning landscape, where the rapid development of 
new models can often leave practitioners with outdated 
tools. By using Langchain, developers can efficiently swap 
out LLMs at any workflow stage to achieve improved per-
formance, accuracy, or other desirable traits inherent in 
more advanced models. 

The utility of this abstraction layer extends beyond the 
wholesale replacement of models. It also permits granular 
control over individual steps within the model workflow. 
This means that each component of the process can be op-



 
 

 

timised by integrating the most suitable model for that spe-
cific task. Such granular control is invaluable, as it pro-
vides the opportunity to tailor each step of the interaction 
with the LLM to align with specific requirements or con-
straints. Consequently, applications deploying these mod-
els become more robust and targeted in their outcomes. 

Langchain's design enhances the portability and scala-
bility of machine learning systems, allowing for simple ex-
pansion in scope and scale. Abstracting model interactions 
enables systems to cater to increased demand or incorpo-
rate complex functionalities without significantly reengi-
neering existing systems. The ability to efficiently manage 
and organise various LLMs through Langchain allows de-
velopers to create more sophisticated applications that can 
handle a wider range of tasks and challenges. 

Moreover, Langchain plays a significant role in encour-
aging best practices in software engineering and model de-
ployment. Enforcing separation of concerns ensures that 
the model logic does not hinder the development of other 
software components. Developers are encouraged to en-
gage in clean code practices and modular development, 
which enhances the maintainability and longevity of soft-
ware systems. Using an abstraction layer thus aids in cre-
ating a more streamlined development process, where dif-
ferent teams can work on separate components without in-
terference, leading to a more collaborative and efficient 
workflow. 

In addition to improving development processes, 
Langchain may also contribute to the reduction of deploy-
ment risks. It allows testing new models within existing in-
frastructures without extensive overhauls, facilitating 
smoother transitions and updates. This capacity to swap 
models quickly and without significant downtime is espe-
cially critical in environments where continuous integra-
tion and deployment are essential requirements. 

Fostering an ecosystem where evolving models can be 
integrated without friction is fundamental to maintaining a 
competitive edge in fields relying heavily on machine 
learning. Langchain thus acts as a linchpin in the opera-
tional management of these models, aligning technological 
capabilities with business objectives. Organisations are 
thereby empowered to harness the full potential of LLM 
advancements with minimal disruption to their existing 
systems. 

 
Value engineering in the back-end solution 
 
Back-end value engineering is a crucial aspect in the de-

velopment of computational tools, particularly tools like 
JackDaw that involve complex model interactions. This 
discipline focuses on the optimal allocation of computa-
tional resources to enhance performance and reduce oper-
ational costs. Within the context of back-end value engi-
neering, a nuanced approach to model selection and imple-
mentation can lead to substantial improvements in effi-
ciency and effectiveness. 

At its core, the process of back-end value engineering 
involves the strategic use of different models for varying 
steps within a computational sequence. By tailoring the 
choice of model to the specific requirements of each task, 
developers can achieve better resource allocation, ulti-
mately enhancing the tool's performance. 

For initial tasks requiring basic language processing ca-
pabilities, models possessing natural language processing 
(NLP) capacity are sufficient. Such tasks often involve 
identifying appropriate arguments to be passed to a func-
tion. NLP models excel in understanding linguistic input, 
making them ideal for these preliminary steps. Their use 
ensures that computational resources are not expended un-
necessarily on more complex models when simpler ones 
suffice. 

In contrast, certain steps necessitate the employment of 
a base model with a comprehensive understanding of di-
verse knowledge areas. Models like GPT-4po serve this 
purpose effectively. These models are designed to possess 
a wide-ranging repository of generic knowledge, thereby 
enabling them to tackle tasks that demand a broad under-
standing. Their utility lies in their ability to provide in-
sights and execute functions that require a generalist per-
spective. 

Moreover, some stages in a computational process ne-
cessitate the application of bespoke models with domain-
specific expertise. An example might be a model engi-
neered to handle species tolerance parameters. These cus-
tom models are tailored to address specialised tasks, offer-
ing insights and solutions that generic models might over-
look. Their usage is particularly advantageous in niche ap-
plications where precision and specialised knowledge are 
critical. 

 
By implementing an optimised model selection strategy, 

the overall cost associated with complex tool-calling 
chains can be significantly mitigated. This approach entails 
identifying the most suitable model for any given task and 
deploying it accordingly. Such strategic allocation not only 
reduces computational expenses but also enhances the 
tool's efficacy in performing its designated functions. 

The process of determining the optimal model for each 
step involves several considerations. These include the 
computational requirements of the task, the desired level 
of accuracy, and the potential impact on overall perfor-
mance. By weighing these factors, developers can make 
informed choices that align with both technical objectives 
and budgetary constraints. 

There is a crucial balance to be struck between leverag-
ing the simplicity and efficiency of NLP models and har-
nessing the expansive capabilities of base models like 
GPT-4po. Additionally, the precision offered by custom-
ised models with specialised knowledge must be integrated 
judiciously to maximise effectiveness. Such decisions re-
quire careful assessment and strategic planning to ensure 
that the right model is deployed at the right stage. 



 
 

 

In scenarios where tasks are relatively straightforward, 
deploying simpler models can free up computational re-
sources, thereby allowing more complex models to be re-
served for tasks that truly necessitate their capabilities. 
Conversely, when tasks demand a more in-depth under-
standing or specialised insight, more sophisticated models 
are utilised to achieve the desired outcomes. 

Furthermore, this tiered approach to model selection 
also facilitates scalability. As computational demands 
evolve, new models can be integrated, or existing models 
can be updated to reflect the latest advancements and re-
quirements. This adaptability ensures the system remains 
robust and responsive to changing needs without requiring 
complete overhauls or excessive expenditure. 

Integrating diverse models in back-end processes also 
fosters innovation, as developers are encouraged to explore 
novel combinations and applications to enhance perfor-
mance. By considering how different models can interact 
and complement one another, new solutions can be devised 
that push the boundaries of current capabilities, all while 
keeping resource use and costs in check. 

Through careful analysis and planning, back-end value 
engineering plays an instrumental role in the development 
and deployment of computational tools. By strategically 
selecting and implementing models tailored to specific 
tasks, developers can transform their systems into more ef-
ficient and cost-effective solutions. This calculated ap-
proach not only optimises performance but also paves the 
way for ongoing innovation and refinement. 

While of lesser scientific value, value engineering is 
critical to ensuring adoption and a realistic path to a real 
and tangible market. 

 
 
RAG module 
 
One of the key components that enables JackDaw to de-

liver more credible and less hallucination-prone responses 
is the Retrieval Augmented Generation (RAG) module, il-
lustrated in Figure X. This module enhances JackDaw’s re-
sponses by grounding them in external references and sup-
porting the ingestion of new data sources. The RAG mod-
ule consists of three main components: 

1. Embedding Model - Transforms input text into high-
dimensional vector embeddings, enabling semantic search 
within a vector database. 

2. PDF-to-Markdown Conversion Tool - Parses user-
submitted PDF files and extracts both content and struc-
ture. It converts the documents into clean, structured Mark-
down, preserving key elements such as headings, para-
graphs, tables, and lists to maintain readability and infor-
mation integrity. 

3. RAG Application - The core service that handles user 
queries, retrieves relevant content from the vector data-
base, and compiles the results for response generation. 

The module uses a microservices architecture to support 
scalability and simplify maintenance. At its core is the 
RAG Application, which orchestrates the query processing 
and retrieval workflow. 

 

 
Fig 3. Overview of the RAG module architecture 

 
The RAG module interfaces with the JackDaw system 

through a reverse proxy, facilitating secure external com-
munication. Internally, the reverse proxy routes requests to 
two main components: the RAG Application and the PDF-
to-Markdown Conversion tool. The RAG Application acts 
as the central component, orchestrating interactions with 
both the PDF-to-Markdown Conversion tool and the Em-
bedding Model. All communication between these compo-
nents occurs internally, ensuring efficient data flow within 
the system. 

Before deployment, the system was seeded with trusted 
content - policy documents and scientific articles. These 
documents were processed using the same PDF-to-Mark-
down tool described above. This tool utilized Docling Li-
brary [23] to perform the parsing. The resulting Markdown 
files were segmented into smaller units of approximately 
500 tokens, referred to as chunks. 

Each chunk was embedded using the Alibaba-NLP/gte-
Qwen2-1.5B-instruct Model [24], a high-performing 
multilingual language model. The resulting embeddings, 
along with their corresponding text chunks, were stored in 
ChromaDB, an open-source vector database optimized for 
similarity search. 

At runtime, when a user submits a query, the RAG Ap-
plication first generates an embedding of the query. This 
embedding is then used to retrieve semantically similar 
chunks from the vector database. These passages are re-
turned to JackDaw along with metadata that includes 
source information, enabling more accurate responses and 
full traceability. This approach ensures that users can ac-
cess the original documents from which answers are de-
rived, promoting transparency and trust. 

Currently, the PDF-to-Markdown tool is limited to pro-
cessing individual PDF files and returning the parsed con-
tent directly to JackDaw. This setup is designed for scenar-
ios where users want assistance understanding or extract-
ing information from specific documents. 

In the future, the tool will be expanded to support the 
creation of personalized knowledge bases. Users will be 



 
 

 

able to upload multiple PDF files, effectively building a 
private vector database similar to the existing global one. 
This personal database can then be used to enrich the re-
sponses generated by the language model, resulting in 
more context-aware, tailored, and useful interactions. 
Moreover, this setup will support the continuous growth of 
the data source, enabling users to expand and evolve their 
assistant’s knowledge over time incrementally. 

IV. RESULTS 
We tested the performance of JackDaw on various sce-

narios related to geospatial data tasks in agriculture and 
forestry and compared its solutions with standard proprie-
tary LLMs to determine its benefits and limitations. For 
each user’s query, our system invokes tools with infor-
mation about the geographical area of interest and reasons 
over the retrieved content to provide a final answer. To 
make the comparison more balanced, we include the geo-
graphical area in the form of bounding box coordinates in 
the input query so that the standard LLM has some infor-
mation about the location. Without this information, the 
standard LLM would have no way of providing relevant 
information. The following scenarios showcase that Jack-
Daw is able to provide location-specific relevant infor-
mation, whereas the standard LLM can only give general 
advice, sometimes not even related to the area of interest. 
We used GPT-4o-mini as the LLM. 

 
Scenario 1 
 
In this scenario, we asked about a partially forested area; 

the user query was: “Is this area forested, and are there any 
specific utilities regarding forestry?”. Figure 4 shows re-
sponses from JackDaw and a standard LLM. It also con-
tains the selected area of interest. GPT-4o-mini managed 
to offer general advice and derived the location from the 
coordinates as close to Pilsen, which is true, but it was un-
able to determine the real location. JackDaw retrieved data 
by utilizing tools and was able to list existing facilities re-
lated to forestry and also determine the distribution of land 
in the area. 

 
Scenario 2 
 
In this scenario, we asked whether an area in the Czech 

Republic is suitable for vineyards. The user query was: 
“Determine if this area is suitable for a vineyard and pro-
vide a concise answer.” Figure 5 shows both responses to-
gether with the area of interest. This time, JackDaw pro-
vided a concise answer consisting of climate, land cover, 
and elevation analysis. The standard LLM wrongly deter-
mined the area to be in Austria, with a general recommen-
dation for the area for vineyards without any backing data. 

 

 

Fig 4. Comparison of responses regarding a query about forestry  
 
Context and Visualisation Imperatives 
In the years leading up to generative AI becoming “pub-

lic property”, the volume of text emerging from argumen-
tative sources such as consultancy reports was already ex-
panding noticeably. The increase was often characterised 
by esoteric industry language and overcomplicated sen-
tence structures, far beyond what was necessary for effec-
tive communication. Reports usually offered vague reason-
ing and inconclusive advice. Consequently, readers, typi-
cally non-scientific, technically oriented professionals had 
to develop new approaches to extract key ideas or recom-
mendations from these wordy passages, which again led to 
altered reading habits and gave root to the scientifically un-
justified and yet not entirely unfounded maxim that “no-
body reads”. 

Following the advent of the Language Model (LLM), 
the creation of well-structured text is now within reach of 
literally anyone, leading to a further accelerated growth in 
well-padded textual content, resulting in a situation where 
now not only “nobody reads” but neither does anyone 
write. While this is anecdotal and should not be considered 
a scientific finding, it does describe a situation where vis-
ualisation remains as important as ever to reveal and con-
vey trends and exceptions in data in a manner that makes 
it more easily accessible to readers who may find a 
good-looking block of text deceptively attractive without 
taking into consideration what it actually says. 

Effective visualisation in this context means applying 
the building blocks derived from the more traditional ana-
lytical tool suites, such as geoportals (maps, 2D, 3D) and 
business intelligence (charts, tables), as well as more ad-
vanced forms of visualisation. 



 
 

 

LLMs generate text and often use the "markdown" lan-
guage to include formatting. This includes the capability of 
outputting code blocks that can contain structured data in-
termixed with the text. A code block may contain any 
text-based or text-representable format, such as GeoJSON 
or GeoCSV, making rendering LLM output as any of the 
above visual indicators easy. JackDaw utilises custom 
markdown renderers to accomplish render tables, charts, 
and maps. 

 

Fig 5. Comparison of responses to an area analysis query related to 
vineyards  

V. CONCLUSION  
This paper has demonstrated that a language-model 

agent can be made spatially competent by constraining its 
reasoning to a query-specific subset of geospatial tools and 
by grounding each answer in an external retrieval layer. 
The proposed JackDaw architecture contributes three prin-
cipal advances: 

1. Structured tool pre-filtering. Tools are surfaced to the 
LLM only when their topical, temporal and spatial 
metadata intersect the user’s query, avoiding the accuracy 
and latency penalties that arise from flat tool lists. 

2. Value-engineered model orchestration. A LangChain 
abstraction allocates lightweight NLP models to syntactic 
steps, reserves foundation models for broad-context rea-
soning, and inserts domain-specific kernels where special-
ised knowledge is required. 

3. Retrieval-augmented generation with transparent 
provenance. A micro-service RAG layer embeds trusted 
documents in a vector store and returns source passages 
with every response, enabling fact-checking and reducing 
hallucinations. 

Benchmark experiments on forestry-asset discovery and 
vineyard-site assessment show that JackDaw delivers con-
cise, location-specific answers, whereas a baseline propri-
etary LLM produces only generic or spatially misattributed 
guidance. These findings confirm that coupling global lan-

guage understanding with local spatial intelligence materi-
ally improves decision support in agriculture and rural 
planning. 

Limitations. The evaluation covered two use-cases 
within Central Europe and a single growing season; 
cross-regional transferability, additional thematic domains 
and longer temporal windows remain untested. The current 
RAG pipeline ingests individual PDF documents but does 
not yet support user-specific knowledge bases or 
large-scale cloud retrieval, and cost modelling excluded 
vector-query overheads. 

Future work. Planned extensions include (i) adaptive on-
tology-driven tool selection to further shrink the action 
space, (ii) ingestion of multimodal sensor streams (e.g., hy-
perspectral cubes, IoT telemetry), (iii) private vector data-
bases for institutional users, and (iv) benchmarking against 
emerging geospatial-LLM test suites. Governance require-
ments—explainability, bias auditing and energy account-
ing—will be addressed to ensure regulatory compliance 
and sustainable operation. 

In summary, the results substantiate that an architecture 
which bridges foundation-scale language models with dy-
namically selected, high-resolution spatial data streams is 
a viable path toward reliable, context-aware AI services for 
agriculture and rural development.   
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