

Karel Charvat

Fusing Language Models and Earth Observation for the Next-Gen AKIS

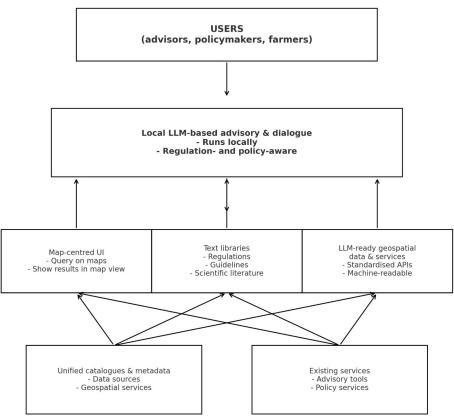
IN COLLABORATION WITH

From Data to Wisdom: JackDaw in Next-Generation AKIS

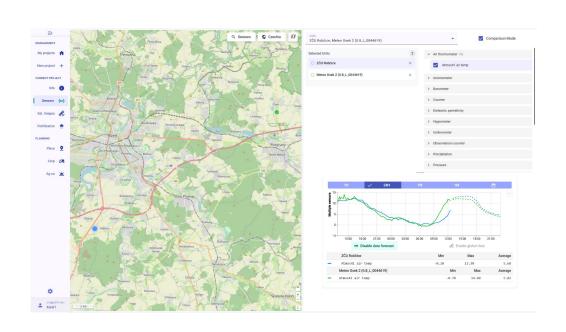
- Traditional AKIS focuses on data aggregation, with limited contextual reasoning and multilingual interaction.
- New LLMs enable cross-lingual, explainable advisory dialogue grounded in domain knowledge.
- JackDaw integrates LLMs with GIS, IoT sensors and Sentinel data for location-specific recommendations.
- Thematic RAGs connect advisory logic to scientific evidence, legislation, regulations, geo-data and policy frameworks.
- Result: regulation-aware, spatially contextual decision support aligned with evolving CAP and Green Deal requirements.

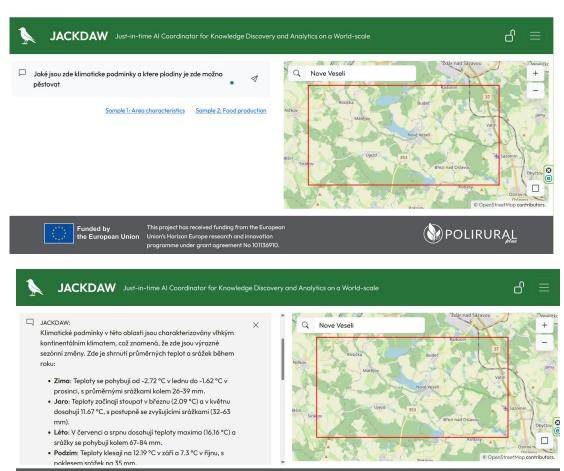
Current work and key technological challenges

- Adapt existing advisory and policy services for LLM-based interaction.
- Curate domain-specific text libraries (regulations, guidelines, scientific literature).
- Expose geospatial data and services in machine-interpretable formats for LLM tools.
- Design map-centred interfaces for spatial querying and result visualisation.
- Build unified catalogues and metadata for available data and services.
- Deploy and optimise locally running LLMs to ensure sovereignty and compliance.



Adapt existing advisory and policy services for LLM-based interaction

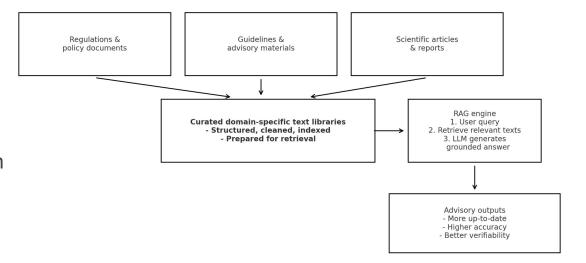




POLIRURAL

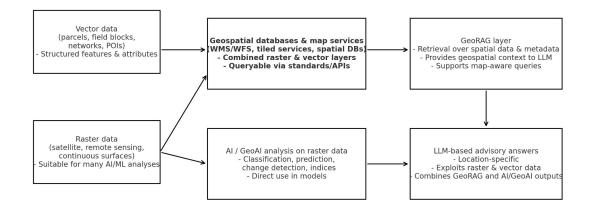
Curate domain-specific text libraries

- Around 2007, the idea emerged to connect quantitative data analysis with automated processing of prescriptions, regulations, directives and scientific articles, but it remained largely a technological utopia.
- Today, Retrieval-Augmented Generation (RAG) enables this by combining language models with targeted search in external document collections and databases.
- The model first retrieves relevant domain documents (regulations, guidelines, scientific papers) and then composes answers grounded in these sources.
- This approach increases the timeliness, factual accuracy and verifiability of advisory outputs.



Geospatial data and services

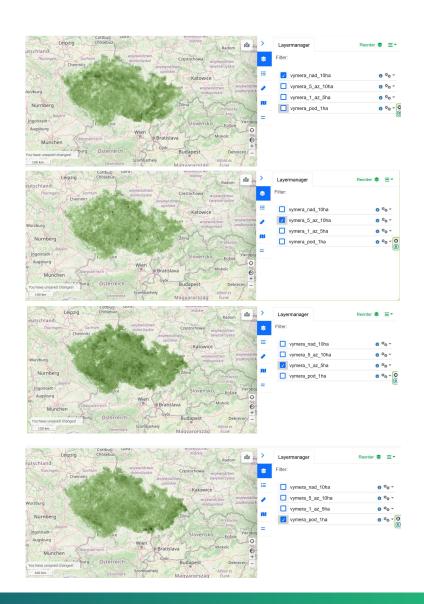
- Geospatial information systems work with both raster and vector data (satellite imagery, remote sensing products, cadastral parcels, field blocks, infrastructure networks).
- Raster data are particularly suitable for many AI and ML analyses (e.g. classification, change detection, yield prediction).
- To fully exploit language models, geospatial data must be accessible in a structured, queryable form (features, attributes, time, uncertainty, provenance).
- GeoRAG solutions link LLMs with spatial databases and map services, allowing the model to retrieve and reason over relevant geospatial layers and services when generating answers.



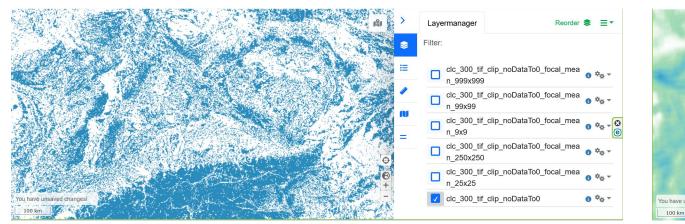
Centrality measure

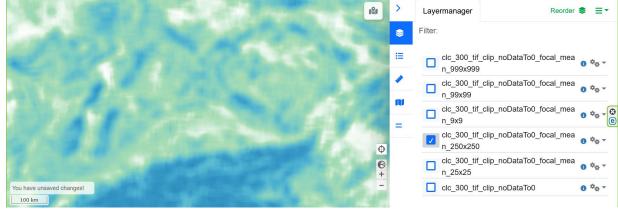
Centrality is a spatial indicator that quantifies the level of presence of a selected feature (e.g. roads, services, infrastructure, specific land use) in the surroundings of a given point or grid cell.

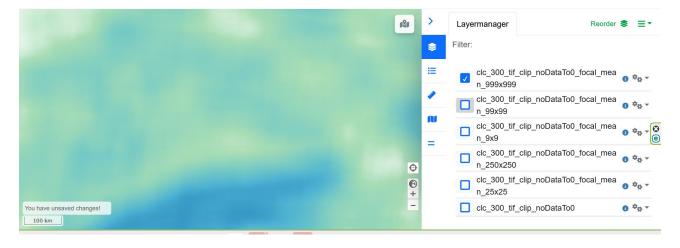
- For each point, the measure aggregates information about features in a defined neighbourhood (e.g. within a radius or along a network) and expresses their density, intensity or accessibility.
- In rasterisation workflows, centrality measures allow vector features to be transformed into continuous raster surfaces that capture how strongly a feature is represented around each location.



Centrality measure can be in different scales

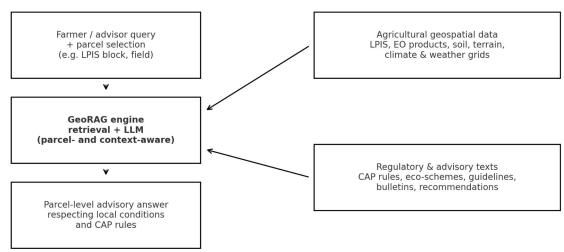






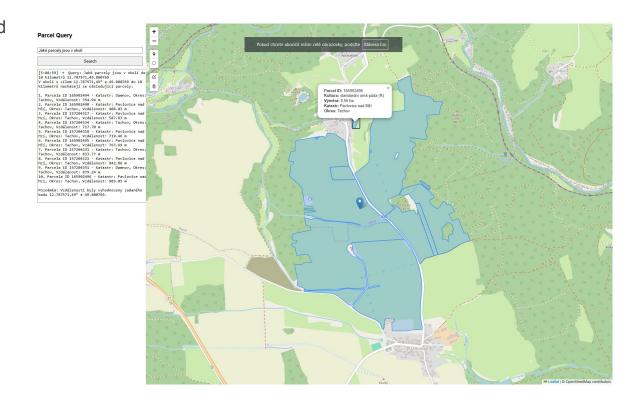
GeoRAG

- GeoRAG combines a large language model with retrieval from agricultural geospatial data (e.g. LPIS/land parcel data, Earth Observation, soil maps, climate and meteorological grids).
- Before generating an answer, the model first searches spatial databases, metadata records and textual documents (e.g. CAP rules, guidelines, advisory bulletins) for the specific location and crop.
- The response is then generated on top of these retrieved geospatial and textual sources, so that recommendations respect parcel boundaries, local conditions and regulatory constraints.
- This enables parcel-level, context-aware advisory dialogue instead of generic, location-agnostic answers.



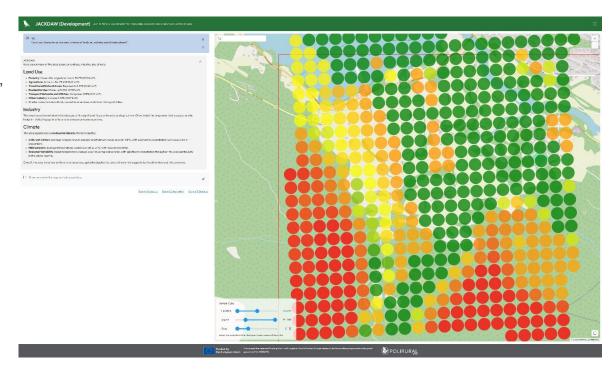
GeoRAG

- Define supported use cases and data sources: LPIS parcels, field blocks, EO-derived products, soil and terrain data, weather and climate datasets, regulatory texts and farm advisories.
- Implement a query parser that converts farmers' and advisors' questions into structured spatial and attribute queries (location, crop, time window, constraints).
- Build retrieval pipelines over spatial databases (e.g. PostGIS), vector embeddings and document stores to obtain relevant parcels, layers and texts for the queried area.
- Design a context assembly layer that merges spatial results (maps, statistics) with regulatory and advisory texts into a controlled prompt for the LLM.
- Integrate the GeoRAG backend with map-based user interfaces and farm management tools, and establish procedures for updating data, monitoring quality and validating outputs against expert knowledge.



Design map-centred interfaces

- Use map-centric clients as the primary entry point for interaction with DataCubes (EO, climate, soil, yield) and parcel-based datasets.
- Allow users to formulate queries by combining spatial selection (parcel, AOI, buffer) with natural-language prompts interpreted by an LLM.
- Integrate DataCube operations (subsetting in space—time, band/indicator selection, aggregation) into LLM tool calls, so that the model can request and transform raster data on demand.
- Provide synchronised map, chart and text panels where:
- the LLM explains what has been computed and why,
- spatial results (indices, anomalies, risk maps) are visualised directly in the map,
- underlying queries and parameters remain inspectable and reproducible.
- Ensure provenance tracking: every advisory response is linked to the exact DataCube version, spatial extent, time window and processing chain used.



Why extend metadata for LLMs

- Existing standards (ISO 19115, DCAT, STAC) are static, dataset-centric and written for humans.
- LLMs require machine-interpretable, semantically rich descriptions of both data and services.
- Today, metadata only weakly reflects user intent, domain concepts and cross-schema relations.
- To support LLMs and RAG, metadata must become part of an operational knowledge architecture, not only a catalogue.

Current metadata standards Limitations for AI / LLMs LLM / RAG requirements - Weak semantics Machine-interpretable metadata

Semantic relations & ontologies

- Data + services as

knowledge graph

From human-readable catalogue records

to semantically rich metadata usable by LLMs

- Poor expression of

- Limited links to services

user intent & context

ISO 19115, DCAT, STAC

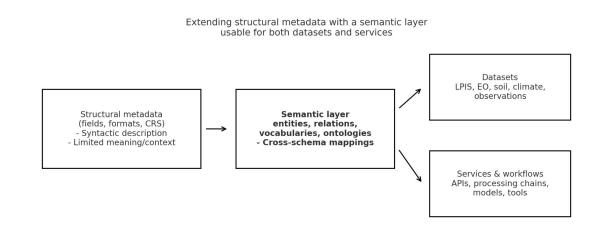
- Static records

- Dataset-centric

- Human-oriented

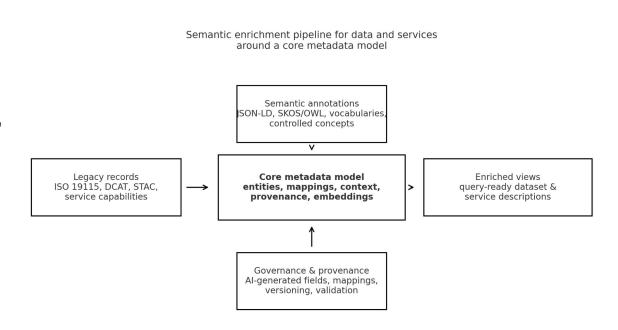
From structural to semantic metadata

- Current records mostly expose structure (fields, formats, CRS) but not meaning or usage context.
- We need to extend metadata with semantic layers: entities, relations, vocabularies, ontologies.
- Metadata must link similar concepts across schemas (e.g. "soil moisture", "SM", "θν") and clarify units, scales and validity.
- The same approach must describe both datasets and services (APIs, processing chains, models, workflows).



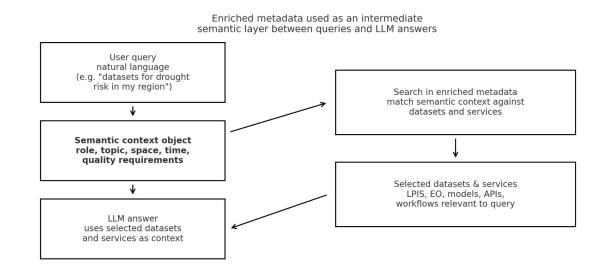
Semantic enrichment of data and services

- Introduce a core model for metadata entities:
 Dataset / Service, Schema, Mapping, Context,
 Provenance, Embedding.
- Attach semantic annotations (JSON-LD, SHACL, SKOS/OWL) to legacy ISO/DCAT/STAC records without breaking compatibility.
- Represent service capabilities (inputs, outputs, preconditions, costs, policies) in a structured, ontology-linked form.
- Maintain provenance and governance for all enriched elements, including Al-generated fields and mappings.



Using enriched metadata in LLM workflows

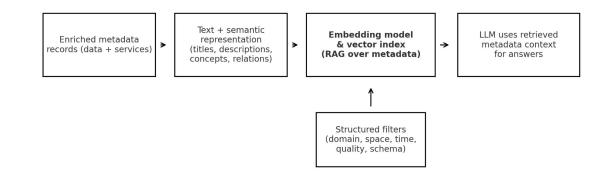
- Natural-language queries are first translated into a semantic "context object" (role, topic, space, time, quality).
- The system searches enriched metadata to find relevant datasets and services matching this context.
- LLMs exploit semantic links and mappings to bridge heterogeneous schemas and catalogues.
- The result is an adaptive metadata view tailored to the query, ready for downstream data access and processing.



Vectorised metadata for RAG and LLMs

- Final step: convert enriched metadata (titles, descriptions, semantic tags, relations, usage notes) into vector embeddings.
- Build a RAG index over these embeddings, combined with structured filters (schema, domain, spatial/temporal coverage).
- LLMs then query the vectorised metadata directly, retrieving the most relevant datasets and services as context.
- This closes the loop: extended, semantic metadata becomes a first-class input to LLMs, enabling explainable and interoperable AI workflows.

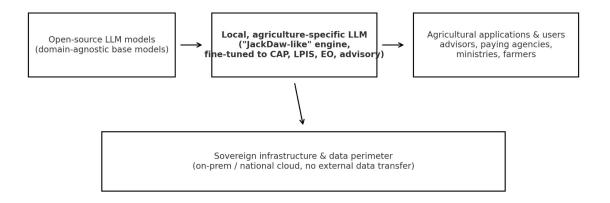
Vectorised metadata as a RAG index feeding LLMs with relevant datasets and services



Deploy and optimise locally running LLMs

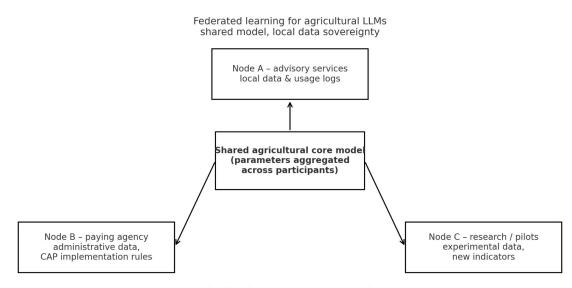
- Objective is not a single "one-size-fits-all" platform, but domain-specific solutions tailored to agriculture.
- A growing ecosystem of open-source language models can run fully on local or sovereign infrastructure, without sending data to external providers.
- These models can be adapted and fine-tuned to agricultural terminology, CAP rules, LPIS structures, EO products and advisory workflows.
- Locally deployed LLMs serve as the core of a "JackDaw-like" engine, configured for specific user groups (advisors, paying agencies, ministries) and integrated with internal data assets.
- This approach supports data sovereignty, compliance with legal and contractual constraints, and controlled evolution of the system in line with policy and organisational needs.

Locally deployed, agriculture-specific LLMs ensuring sovereignty and compliance



Federated learning – next development step

- Shift from isolated local models to collaboratively trained models across multiple organisations (advisory services, paying agencies, research institutes).
- Use federated learning to update shared model parameters without centralising raw data, preserving data sovereignty and confidentiality.
- Allow domain-specific specialisation: global "core" agricultural model plus local adaptations for national CAP implementations, languages and farming systems.
- Integrate federated training with the existing GeoRAG and metadata architecture, so that improvements in one node benefit others while respecting legal constraints.
- Establish governance, monitoring and evaluation procedures (participating nodes, update policies, validation datasets) to ensure robustness, transparency and compliance.



Model is trained locally in each node; aggregated parameters are merged in the shared core model. Raw data remain in nodes.

Next steps and opportunities for cooperation

- In the rest of November and December we will organise a series of detailed technical training sessions on the individual components of the presented architecture.
- Information and registration will be announced on the project website: https://www.poliruralplus.eu/
- The trainings are primarily targeted at winners of our open calls, but participation will be open to the wider community.
- All sessions will be recorded and subsequently made available via YouTube.
- Interested organisations and experts are invited to join these sessions as a starting point for more structured cooperation.

charvat@plan4all.eu

Name of the project:

Fostering Sustainable, Balanced, Equitable, Placebased and Inclusive Development of Rural-Urban Communities' Using Specific Spatial Enhanced Attractiveness Mapping ToolBox

Thank You for Your Attention

