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From Data to Wisdom: JackDaw in 
Next-Generation AKIS

• Traditional AKIS focuses on data aggregation, with 

limited contextual reasoning and multilingual interaction.

• New LLMs enable cross-lingual, explainable advisory 

dialogue grounded in domain knowledge.

• JackDaw integrates LLMs with GIS, IoT sensors and 

Sentinel data for location-specific recommendations.

• Thematic RAGs connect advisory logic to scientific 

evidence, legislation, regulations, geo-data and policy 
frameworks.

• Result: regulation-aware, spatially contextual decision 

support aligned with evolving CAP and Green Deal 
requirements.



Current work and key technological 
challenges

• Adapt existing advisory and policy services for 
LLM-based interaction.

• Curate domain-specific text libraries (regulations, 
guidelines, scientific literature).

• Expose geospatial data and services in 
machine-interpretable formats for LLM tools.

• Design map-centred interfaces for spatial querying and 
result visualisation.

• Build unified catalogues and metadata for available data 
and services.

• Deploy and optimise locally running LLMs to ensure 
sovereignty and compliance.



Adapt existing advisory and policy 
services for LLM-based interaction



Curate domain-specific text libraries
• Around 2007, the idea emerged to connect quantitative 

data analysis with automated processing of 
prescriptions, regulations, directives and scientific 
articles, but it remained largely a technological utopia.

• Today, Retrieval-Augmented Generation (RAG) enables 

this by combining language models with targeted search 
in external document collections and databases.

• The model first retrieves relevant domain documents 

(regulations, guidelines, scientific papers) and then 
composes answers grounded in these sources.

• This approach increases the timeliness, factual accuracy 

and verifiability of advisory outputs.



Geospatial data and services
• Geospatial information systems work with both raster 

and vector data (satellite imagery, remote sensing 
products, cadastral parcels, field blocks, infrastructure 
networks).

• Raster data are particularly suitable for many AI and ML 
analyses (e.g. classification, change detection, yield 
prediction).

• To fully exploit language models, geospatial data must 
be accessible in a structured, queryable form (features, 
attributes, time, uncertainty, provenance).

• GeoRAG solutions link LLMs with spatial databases and 
map services, allowing the model to retrieve and reason 
over relevant geospatial layers and services when 
generating answers.



Centrality measure
Centrality is a spatial indicator that quantifies the level of 
presence of a selected feature (e.g. roads, services, 
infrastructure, specific land use) in the surroundings of a 
given point or grid cell.

• For each point, the measure aggregates information 

about features in a defined neighbourhood (e.g. within a 
radius or along a network) and expresses their density, 
intensity or accessibility.

• In rasterisation workflows, centrality measures allow 

vector features to be transformed into continuous raster 
surfaces that capture how strongly a feature is 
represented around each location.



Centrality measure can be in different 
scales



GeoRAG
• GeoRAG combines a large language model with 

retrieval from agricultural geospatial data (e.g. LPIS/land 
parcel data, Earth Observation, soil maps, climate and 
meteorological grids).

• Before generating an answer, the model first searches 
spatial databases, metadata records and textual 
documents (e.g. CAP rules, guidelines, advisory 
bulletins) for the specific location and crop.

• The response is then generated on top of these 
retrieved geospatial and textual sources, so that 
recommendations respect parcel boundaries, local 
conditions and regulatory constraints.

• This enables parcel-level, context-aware advisory 
dialogue instead of generic, location-agnostic answers.



GeoRAG
• Define supported use cases and data sources: LPIS parcels, field 

blocks, EO-derived products, soil and terrain data, weather and 
climate datasets, regulatory texts and farm advisories.

• Implement a query parser that converts farmers’ and advisors’ 
questions into structured spatial and attribute queries (location, 
crop, time window, constraints).

• Build retrieval pipelines over spatial databases (e.g. PostGIS), 
vector embeddings and document stores to obtain relevant 
parcels, layers and texts for the queried area.

• Design a context assembly layer that merges spatial results 
(maps, statistics) with regulatory and advisory texts into a 
controlled prompt for the LLM.

• Integrate the GeoRAG backend with map-based user interfaces 
and farm management tools, and establish procedures for 
updating data, monitoring quality and validating outputs against 
expert knowledge.



Design map-centred interfaces
• Use map-centric clients as the primary entry point for interaction with 

DataCubes (EO, climate, soil, yield) and parcel-based datasets.

• Allow users to formulate queries by combining spatial selection (parcel, 

AOI, buffer) with natural-language prompts interpreted by an LLM.

• Integrate DataCube operations (subsetting in space–time, 

band/indicator selection, aggregation) into LLM tool calls, so that the 
model can request and transform raster data on demand.

• Provide synchronised map, chart and text panels where:

• the LLM explains what has been computed and why,

• spatial results (indices, anomalies, risk maps) are visualised directly in 

the map,

• underlying queries and parameters remain inspectable and 

reproducible.

• Ensure provenance tracking: every advisory response is linked to the 

exact DataCube version, spatial extent, time window and processing 
chain used.



Why extend metadata for LLMs
• Existing standards (ISO 19115, DCAT, STAC) are 

static, dataset-centric and written for humans.

• LLMs require machine-interpretable, semantically 

rich descriptions of both data and services.

• Today, metadata only weakly reflects user intent, 

domain concepts and cross-schema relations.

• To support LLMs and RAG, metadata must 

become part of an operational knowledge 
architecture, not only a catalogue.



From structural to semantic metadata
• Current records mostly expose structure (fields, 

formats, CRS) but not meaning or usage context.

• We need to extend metadata with semantic 

layers: entities, relations, vocabularies, 
ontologies.

• Metadata must link similar concepts across 

schemas (e.g. “soil moisture”, “SM”, “θv”) and 
clarify units, scales and validity.

• The same approach must describe both datasets 

and services (APIs, processing chains, models, 
workflows).



Semantic enrichment of data and 
services
• Introduce a core model for metadata entities: 

Dataset / Service, Schema, Mapping, Context, 
Provenance, Embedding.

• Attach semantic annotations (JSON-LD, SHACL, 
SKOS/OWL) to legacy ISO/DCAT/STAC records 
without breaking compatibility.

• Represent service capabilities (inputs, outputs, 
preconditions, costs, policies) in a structured, 
ontology-linked form.

• Maintain provenance and governance for all 
enriched elements, including AI-generated fields 
and mappings.



Using enriched metadata in LLM 
workflows
• Natural-language queries are first translated into 

a semantic “context object” (role, topic, space, 
time, quality).

• The system searches enriched metadata to find 
relevant datasets and services matching this 
context.

• LLMs exploit semantic links and mappings to 
bridge heterogeneous schemas and catalogues.

• The result is an adaptive metadata view tailored 
to the query, ready for downstream data access 
and processing.



Vectorised metadata for RAG and LLMs
• Final step: convert enriched metadata (titles, 

descriptions, semantic tags, relations, usage notes) into 
vector embeddings.

• Build a RAG index over these embeddings, combined 
with structured filters (schema, domain, spatial/temporal 
coverage).

• LLMs then query the vectorised metadata directly, 
retrieving the most relevant datasets and services as 
context.

• This closes the loop: extended, semantic metadata 
becomes a first-class input to LLMs, enabling 
explainable and interoperable AI workflows.



Deploy and optimise locally running LLMs
• Objective is not a single “one-size-fits-all” platform, but 

domain-specific solutions tailored to agriculture.
• A growing ecosystem of open-source language models can 

run fully on local or sovereign infrastructure, without sending 
data to external providers.

• These models can be adapted and fine-tuned to agricultural 
terminology, CAP rules, LPIS structures, EO products and 
advisory workflows.

• Locally deployed LLMs serve as the core of a “JackDaw-like” 
engine, configured for specific user groups (advisors, paying 
agencies, ministries) and integrated with internal data assets.

• This approach supports data sovereignty, compliance with 
legal and contractual constraints, and controlled evolution of 
the system in line with policy and organisational needs.



Federated learning – next development 
step

• Shift from isolated local models to collaboratively trained models 
across multiple organisations (advisory services, paying 
agencies, research institutes).

• Use federated learning to update shared model parameters 
without centralising raw data, preserving data sovereignty and 
confidentiality.

• Allow domain-specific specialisation: global “core” agricultural 
model plus local adaptations for national CAP implementations, 
languages and farming systems.

• Integrate federated training with the existing GeoRAG and 
metadata architecture, so that improvements in one node benefit 
others while respecting legal constraints.

• Establish governance, monitoring and evaluation procedures 
(participating nodes, update policies, validation datasets) to 
ensure robustness, transparency and compliance.



Next steps and opportunities for 
cooperation

• In the rest of November and December we will organise 
a series of detailed technical training sessions on the 
individual components of the presented architecture.

• Information and registration will be announced on the 
project website: https://www.poliruralplus.eu/

• The trainings are primarily targeted at winners of our 
open calls, but participation will be open to the wider 
community.

• All sessions will be recorded and subsequently made 
available via YouTube.

• Interested organisations and experts are invited to join 
these sessions as a starting point for more structured 
cooperation.
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